Search results
Found 8243 matches for
D-cycloserine as adjunct to brief computerised CBT for spider fear: Effects on fear, behaviour, and cognitive biases.
BACKGROUND AND OBJECTIVES: In anxiety disorders, cognitive behavioural therapy (CBT) improves information-processing biases such as implicit fear evaluations and avoidance tendencies, which predicts treatment response. Thus, these cognitive biases might constitute important treatment targets. This study investigated (i) whether information-processing biases could be changed following single-session computerised CBT for spider fear, and (ii) whether this effect could be augmented by administration of D-cycloserine (DCS). METHODS: Spider-fearful individuals were randomized to receiving either 250 mg of DCS (n = 21) or placebo (n = 17). Three hours after drug administration, they received single-session computerized CBT, characterized by psychoeducation and exposure elements. Spider fear was assessed using self-report, behavioural, and information processing (Extrinsic Affective Simon Task & Approach Avoidance Task) measures at baseline (before drug administration), post-treatment, 1-day, and 1-month follow-up. RESULTS: Linear mixed-effects analyses indicated significant improvements on self-report and behavioural spider fear indices following CBT, but not on cognitive bias measures. There was no evidence of an augmentation effect of DCS on any outcome. Cognitive bias measures at 1-day were not predictive of 1-month follow-up spider fear in adjusted linear regression analyses. LIMITATIONS: Results might be biased by limited representativeness of the sample (high education and intelligence, largely Caucasian ethnicity, young age). The study was also only powered for detection of medium-sized DCS effects. CONCLUSIONS: These findings do not provide evidence for information-processing biases relating to treatment outcome following computerised CBT for spider fear or augmentation with DCS.
The elephant in the room: understanding the pathogenesis of Charles Bonnet syndrome.
PURPOSE: Charles Bonnet syndrome (CBS) is a syndrome characterised by complex visual hallucinations in individuals who are cognitively normal, though often elderly and visually impaired. Although first described over 250 years ago, the condition remains poorly understood and difficult to treat. RECENT FINDINGS: Our understanding of CBS pathogenesis has advanced little since it was first described, and much of the recent literature consists of case studies strikingly similar to the first published account of CBS. However, imaging studies have provided some indication as to the cortical areas implicated in the genesis of complex visual hallucinations, and the existence of similar hallucinatory syndromes in other sensory modalities suggests a common underlying mechanism. SUMMARY: This review begins by describing what is currently known about CBS, focusing on epidemiology, clinical presentation and diagnosis. It then explores potential starting points for better understanding the pathogenesis of CBS, namely the existence of similar conditions in other sensory modalities and the reproduction of complex visual hallucinations in sensory deprivation scenarios. Finally, it discusses how CBS should be approached in clinical practice.
Normative cerebral cortical thickness for human visual areas.
Studies of changes in cerebral neocortical thickness often rely on small control samples for comparison with specific populations with abnormal visual systems. We present a normative dataset for FreeSurfer-derived cortical thickness across 25 human visual areas derived from 960 participants in the Human Connectome Project. Cortical thickness varies systematically across visual areas, in broad agreement with canonical visual system hierarchies in the dorsal and ventral pathways. In addition, cortical thickness estimates show consistent within-subject variability and reliability. Importantly, cortical thickness estimates in visual areas are well described by a normal distribution, making them amenable to direct statistical comparison.
Effects of Home-Based Working Memory Training on Visuo-Spatial Working Memory in Parkinson's Disease: A Randomized Controlled Trial.
Background: Cognitive impairment is a very frequent and severe nonmotor symptom of Parkinson's disease (PD). Early intervention in this at-risk group for cognitive decline may be crucial for long-term preservation of cognitive functions. Computerized working memory training (WMT) has been proven beneficial in non-PD patient populations, but such evidence is still needed for patients with PD. Objective: This study aimed to evaluate the effect of WMT on visuo-spatial working memory (WM) in cognitively unimpaired patients with PD. Methods: A single-blind randomized controlled trial encompassing 76 patients with PD but no cognitive impairment according to level II diagnostic criteria was conducted. Thirty-seven patients engaged in home-based adaptive WMT 5 times per week for a period of 5 weeks, whereas the remaining patients were in the waiting list arm of the study (control group [CG]). Working memory performance was evaluated using a computerized task before and after intervention and at 14-week follow-up, allowing to quantify the precision of WM on a continuous scale, ie, to test not only if an item was remembered but also how well the location of this item was retained. Results: Coincidently, the WMT group showed slightly worse WM performance compared with the CG at baseline, which was ameliorated after WMT. This training-induced effect remained stable until follow-up. Conclusion: Patients showing relatively low WM performance, despite not formally diagnosable as Parkinson's disease with mild cognitive impairment (PD-MCI), seem to benefit from home-based WMT. Thus, WMT could potentially be implemented in future trials as a time- and cost-efficient route to counteract subtle cognitive changes in early disease stages. Trial registration: German Clinical Trial Register (drks.de, DRKS00009379).
Outcome Measures Used in Ocular Gene Therapy Trials: A Scoping Review of Current Practice.
Multiple gene therapy trials are occurring for a variety of ophthalmic diseases around the world. The safety of gene therapy in the eye has been established, and the next step is to reliably assess efficacy. This is primarily done through the use of imaging techniques and visual function measures. Standardized visual function assessments, however, were originally developed for a clinical setting and may not be suitable for detecting and quantifying therapeutic changes. This scoping review takes a comprehensive look at current practice in terms of the outcome measures defined at trial registration. These were compared to the outcome measures reported in the literature. All published trials reported the pre-registered primary outcome measure. A range of additional secondary outcomes were reported that were not originally planned. Gaps in gene therapy assessment exist and further discussion are required to find a way forward, particularly as more conditions progress to phase 2 and 3 trials. Several factors impacting on trial design and outcome measure choice are discussed.
Validation of electronic visual acuity (EVA) measurement against standardised ETDRS charts in patients with visual field loss from inherited retinal degenerations.
BACKGROUND: With the increase in clinical trials testing therapy for retinal disease, there is a need to ensure that outcome measures are both accurate and standardised. The US Food and Drug Administration favours the use of visual acuity measured using ETDRS logMAR charts. The loss of visual field can interfere with visual tracking across the charts, leading to increased variability of measurements. Electronic visual acuity (EVA) presents the optotype on the centre of a screen, thereby removing the tracking element of the task, and may provide a more precise measurement. METHODS: Visual acuity was measured twice using ETDRS charts, EVA automated single letter (E-ETDRS) and EVA single line (EVA-SL) presentation (EMMES). Patients underwent microperimetry (MAIA; Centervue) to determine visual field. We tested 65 patients with rod-cone dystrophies and 41 healthy volunteers. RESULTS: Both participant groups read 2-3 letters more on average on the electronic charts compared with ETDRS. Limits of agreement using a modified Bland-Altman analysis account for replicates were wider in eyes with foveal defects (-9 to 18) compared with eyes without foveal defects (-11 to 15). Electronic charts in the presence of foveal defects reduced the range (-11 to 13). CONCLUSION: EVA may provide more accurate measures of visual acuity than traditional ETDRS charts in patients when the visual field loss encroached on the central vision. Electronic presentation with a single line of letters was the favoured style reported by patients and should be considered in future interventional clinical trials.
Comparison of Neurochemical and BOLD Signal Contrast Response Functions in the Human Visual Cortex.
We investigated the relationship between neurochemical and hemodynamic responses as a function of image contrast in the human primary visual cortex (V1). Simultaneously acquired BOLD-fMRI and single voxel proton MR spectroscopy signals were measured in V1 of 24 healthy human participants of either sex at 7 tesla field strength, in response to presentations (64 s blocks) of different levels of image contrast (3%, 12.5%, 50%, 100%). Our results suggest that complementary measures of neurotransmission and energy metabolism are in partial agreement: BOLD and glutamate signals were linear with image contrast; however, a significant increase in glutamate concentration was evident only at the highest intensity level. In contrast, GABA signals were steady across all intensity levels. These results suggest that neurochemical concentrations are maintained at lower ranges of contrast levels, which match the statistics of natural vision, and that high stimulus intensity may be critical to increase sensitivity to visually modulated glutamate signals in the early visual cortex using MR spectroscopy.SIGNIFICANCE STATEMENT Glutamate and GABA are the major excitatory and inhibitory neurotransmitters of the brain. To better understand the relationship between MRS-visible neurochemicals, the BOLD signal change, and stimulus intensity, we measured combined neurochemical and BOLD signals (combined fMRI-MRS) to different image contrasts in human V1 at 7 tesla. While a linear change to contrast was present for both signals, the increase in glutamate was significant only at the highest stimulus intensity. These results suggest that hemodynamic and neurochemical signals reflect common metabolic markers of neural activity, whereas the mismatch at lower contrast levels may indicate a sensitivity threshold for detecting neurochemical changes during visual processing. Our results highlight the challenge and importance of reconciling cellular and metabolic measures of neural activity in the human brain.
Alcohol consumption is associated with reduced creatine levels in the hippocampus of older adults.
Besides its well established susceptibility to ageing, the hippocampus has also been shown to be affected by alcohol consumption. Proton spectroscopy (1H-MRS) of the hippocampus, particularly at high-field 7T MRI, may further our understanding of these associations. Here, we aimed to examine how hippocampal metabolites varied with age and alcohol consumption. Hippocampal metabolite spectra were acquired in 37 older adults using 7T 1H-MRS, from which we determined the absolute concentration of N-acetylaspartate (NAA), creatine, choline, myo-inositol, glutamate and glutamine. Thirty participants (mean age = 70.4 ± 4.7 years) also had self-reported data on weekly alcohol consumption. Total choline inversely correlated with age, although this did not survive multiple comparisons correction. Crucially, adults with a higher weekly alcohol consumption had significantly lower levels of creatine, suggesting a deficit in their hippocampal metabolism. These findings add to an increasing body of evidence linking alcohol to hippocampal function.
Denoising scanner effects from multimodal MRI data using linked independent component analysis.
Pooling magnetic resonance imaging (MRI) data across research studies, or utilizing shared data from imaging repositories, presents exceptional opportunities to advance and enhance reproducibility of neuroscience research. However, scanner confounds hinder pooling data collected on different scanners or across software and hardware upgrades on the same scanner, even when all acquisition protocols are harmonized. These confounds reduce power and can lead to spurious findings. Unfortunately, methods to address this problem are scant. In this study, we propose a novel denoising approach that implements a data-driven linked independent component analysis (LICA) to identify scanner-related effects for removal from multimodal MRI to denoise scanner effects. We utilized multi-study data to test our proposed method that were collected on a single 3T scanner, pre- and post-software and major hardware upgrades and using different acquisition parameters. Our proposed denoising method shows a greater reduction of scanner-related variance compared with standard GLM confound regression or ICA-based single-modality denoising. Although we did not test it here, for combining data across different scanners, LICA should prove even better at identifying scanner effects as between-scanner variability is generally much larger than within-scanner variability. Our method has great promise for denoising scanner effects in multi-study and in large-scale multi-site studies that may be confounded by scanner differences.
Temporal ordering of input modulates connectivity formation in a developmental neuronal network model of the cortex.
Preterm infant brain activity is discontinuous; bursts of activity recorded using EEG (electroencephalography), thought to be driven by subcortical regions, display scale free properties and exhibit a complex temporal ordering known as long-range temporal correlations (LRTCs). During brain development, activity-dependent mechanisms are essential for synaptic connectivity formation, and abolishing burst activity in animal models leads to weak disorganised synaptic connectivity. Moreover, synaptic pruning shares similar mechanisms to spike-timing dependent plasticity (STDP), suggesting that the timing of activity may play a critical role in connectivity formation. We investigated, in a computational model of leaky integrate-and-fire neurones, whether the temporal ordering of burst activity within an external driving input could modulate connectivity formation in the network. Connectivity evolved across the course of simulations using an approach analogous to STDP, from networks with initial random connectivity. Small-world connectivity and hub neurones emerged in the network structure-characteristic properties of mature brain networks. Notably, driving the network with an external input which exhibited LRTCs in the temporal ordering of burst activity facilitated the emergence of these network properties, increasing the speed with which they emerged compared with when the network was driven by the same input with the bursts randomly ordered in time. Moreover, the emergence of small-world properties was dependent on the strength of the LRTCs. These results suggest that the temporal ordering of burst activity could play an important role in synaptic connectivity formation and the emergence of small-world topology in the developing brain.
Precocious myelination in a mouse model of autism.
Autism spectrum disorder (ASD) has been hypothesized to be a result of altered connectivity in the brain. Recent imaging studies suggest accelerated maturation of the white matter in young children with ASD, with underlying mechanisms unknown. Myelin is an integral part of the white matter and critical for connectivity; however, its role in ASD remains largely unclear. Here, we investigated myelin development in a model of idiopathic ASD, the BTBR mice. Magnetic resonance imaging revealed that fiber tracts in the frontal brain of the BTBR mice had increased volume at postnatal day 6, but the difference reduced over time, reminiscent of the findings in young patients. We further identified that myelination in the frontal brain of both male and female neonatal BTBR mice was increased, associated with elevated levels of myelin basic protein. However, myelin pattern was unaltered in adult BTBR mice, revealing accelerated developmental trajectory of myelination. Consistently, we found that signaling of platelet-derived growth factor receptor alpha (PDGFRα) was reduced in the frontal brain of neonatal BTBR mice. However, levels of microRNA species known to regulate PDGFRα signaling and myelination were unaltered. Together, these results suggest that precocious myelination could potentially contribute to increased volume and connectivity of the white matter observed in young children with ASD.
Mouse MRI shows brain areas relatively larger in males emerge before those larger in females.
Sex differences exist in behaviors, disease and neuropsychiatric disorders. Sexual dimorphisms however, have yet to be studied across the whole brain and across a comprehensive time course of postnatal development. Here, we use manganese-enhanced MRI (MEMRI) to longitudinally image male and female C57BL/6J mice across 9 time points, beginning at postnatal day 3. We recapitulate findings on canonically dimorphic areas, demonstrating MEMRI's ability to study neuroanatomical sex differences. We discover, upon whole-brain volume correction, that neuroanatomical regions larger in males develop earlier than those larger in females. Groups of areas with shared sexually dimorphic developmental trajectories reflect behavioral and functional networks, and expression of genes involved with sex processes. Also, post-pubertal neuroanatomy is highly individualized, and individualization occurs earlier in males. Our results demonstrate the ability of MEMRI to reveal comprehensive developmental differences between male and female brains, which will improve our understanding of sex-specific predispositions to various neuropsychiatric disorders.
Modulation of hippocampal neuronal resilience during aging by the Hsp70/Hsp90 co-chaperone STI1.
Chaperone networks are dysregulated with aging, but whether compromised Hsp70/Hsp90 chaperone function disturbs neuronal resilience is unknown. Stress-inducible phosphoprotein 1 (STI1; STIP1; HOP) is a co-chaperone that simultaneously interacts with Hsp70 and Hsp90, but whose function in vivo remains poorly understood. We combined in-depth analysis of chaperone genes in human datasets, analysis of a neuronal cell line lacking STI1 and of a mouse line with a hypomorphic Stip1 allele to investigate the requirement for STI1 in aging. Our experiments revealed that dysfunctional STI1 activity compromised Hsp70/Hsp90 chaperone network and neuronal resilience. The levels of a set of Hsp90 co-chaperones and client proteins were selectively affected by reduced levels of STI1, suggesting that their stability depends on functional Hsp70/Hsp90 machinery. Analysis of human databases revealed a subset of co-chaperones, including STI1, whose loss of function is incompatible with life in mammals, albeit they are not essential in yeast. Importantly, mice expressing a hypomorphic STI1 allele presented spontaneous age-dependent hippocampal neurodegeneration and reduced hippocampal volume, with consequent spatial memory deficit. We suggest that impaired STI1 function compromises Hsp70/Hsp90 chaperone activity in mammals and can by itself cause age-dependent hippocampal neurodegeneration in mice. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Intact extrastriate visual network without primary visual cortex in a Rhesus macaque with naturally occurring Blindsight
<jats:title>Abstract</jats:title><jats:p>Lesions of primate primary visual cortex (V1) lead to loss of conscious visual perception, and are often devastating to those affected. Understanding the neural consequences of such damage may aid the development of rehabilitation methods. In this rare case of a Rhesus macaque (monkey S), likely born without V1, we investigated the brain structures underlying residual visual abilities using multimodal magnetic resonance imaging. In-group behaviour was unremarkable. Compared to controls, visual structures outside of monkey S’s lesion appeared normal. Visual stimulation under anaesthesia with checkerboards activated lateral geniculate nucleus of monkey S, but not the pulvinar, while full-field moving dots activated the pulvinar. Functional connectivity analysis revealed a network of bilateral dorsal visual areas temporally correlated with V5/MT, consistent across lesion and control animals. Overall, we found an intact network of visual cortical areas even without V1, but little evidence for strengthened subcortical input to V5/MT supporting residual visual function.</jats:p>
Frequency difference mapping applied to the corpus callosum at 7T.
PURPOSE: Frequency difference mapping (FDM) is a phase processing technique which characterizes the nonlinear temporal evolution of the phase of gradient echo (GE) signals. Here, a novel FDM-processing algorithm is introduced, which is shown to reveal information about white matter microstructure. Unlike some other phase-processing techniques, the FDM algorithm presented here does not require the use of phase unwrapping or sophisticated image processing. It uses a series of scaled complex divisions to unwrap phase and remove background fields. METHODS: Ten healthy subjects underwent a series of single-slice, sagittal multi-echo GE scans at 7T with the slice positioned at the midline. Phase data were processed with the novel FDM algorithm, and the temporal evolution of the magnitude signal and frequency difference was examined in 5 regions of the corpus callosum (CC; genu, anterior body, middle body, posterior body, and splenium). RESULTS: Consistent frequency difference contrast relative to surrounding tissue was observed in all subjects in the CC and in other white matter regions where the nerve fibers run perpendicular to B 0 , such as the superior cerebellar peduncle. Examination of the frequency difference curves shows distinct variations over the CC, with the genu and splenium displaying larger frequency differences than the other regions (in addition to a faster decay of signal magnitude). CONCLUSION: The novel FDM algorithm presented here yields images sensitive to tissue microstructure and microstructural differences over the CC in a simple manner, without the requirement for phase unwrapping or sophisticated image processing.
Preserved extrastriate visual network in a monkey with substantial, naturally occurring damage to primary visual cortex.
Lesions of primary visual cortex (V1) lead to loss of conscious visual perception with significant impact on human patients. Understanding the neural consequences of such damage may aid the development of rehabilitation methods. In this rare case of a Rhesus macaque (monkey S), likely born without V1, the animal's in-group behaviour was unremarkable, but visual task training was impaired. With multi-modal magnetic resonance imaging, visual structures outside of the lesion appeared normal. Visual stimulation under anaesthesia with checkerboards activated lateral geniculate nucleus of monkey S, while full-field moving dots activated pulvinar. Visual cortical activation was sparse but included face patches. Consistently across lesion and control monkeys, functional connectivity analysis revealed an intact network of bilateral dorsal visual areas temporally correlated with V5/MT activation, even without V1. Despite robust subcortical responses to visual stimulation, we found little evidence for strengthened subcortical input to V5/MT supporting residual visual function or blindsight-like phenomena.