Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

How Resting-State Functional Connectivity (RSFC) is modified by learning is an important but rarely asked question. Here we used functional near-infrared spectroscopy (fNIRS) to measure changes in RSFC after learning novel subtraction and multiplication facts by forty-one young adult volunteers. We also measured changes in regional hemoglobin concentration. Fronto-parietal RSFC was modified by arithmetic learning and the fronto-parietal RSFC configuration before learning predicted the effectiveness of arithmetic learning. We also found a significant learning effect indicated by a monotonic decrease in reaction time and an increase in accuracy. Regional task-dependent oxy-hemoglobin concentration differentiated subtraction from multiplication learning supporting previous fMRI findings. These results suggest the sensitivity and importance of fronto-parietal connectivity to arithmetic learning.

Original publication

DOI

10.1016/j.cortex.2018.07.016

Type

Journal article

Journal

Cortex

Publication Date

02/2019

Volume

111

Pages

51 - 62

Keywords

Arithmetic learning, Fronto-parietal network, Functional near-infrared spectroscopy, Resting-state functional connectivity