Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

© 2017 by the authors. In recent years, Convolutional Neural Networks (ConvNets) have rapidly emerged as a widespread machine learning technique in a number of applications especially in the area of medical image classification and segmentation. In this paper, we propose a novel approach that uses ConvNet for classifying brain medical images into healthy and unhealthy brain images. The unhealthy images of brain tumors are categorized also into low grades and high grades. In particular, we use the modified version of the Alex Krizhevsky network (AlexNet) deep learning architecture on magnetic resonance images as a potential tumor classification technique. The classification is performed on the whole image where the labels in the training set are at the image level rather than the pixel level. The results showed a reasonable performance in characterizing the brain medical images with an accuracy of 91.16%.

Original publication

DOI

10.3390/app8010027

Type

Journal article

Journal

Applied Sciences (Switzerland)

Publication Date

25/12/2017

Volume

8