Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Gait is thought to have a cognitive component, but the current evidence in healthy elderly is mixed. We studied the association between multiple gait and cognitive measures in a cohort of older people. METHODS: One hundred and seventy-eight cognitively healthy participants from the Whitehall II Imaging Sub-study had a detailed clinical and neuropsychological assessment, as well as an MRI scan. Spatiotemporal and variability gait measures were derived from two 10 m walks at self-selected speed. We did a linear regression analysis, entering potential confounders with backwards elimination of variables with p ≥ 0.1. The remaining variables were then entered into a second regression before doing a stepwise analysis of cognitive measures, entering variables with p < 0.05 and removing those with p ≥ 0.1. RESULTS: Amongst absolute gait measures, only greater stride length was associated with better performance on the Trail Making Test A (p = 0.023) and the Boston Naming Test (p = 0.042). The stride time variability was associated with performance on the Trail Making Test A (p = 0.031). Age was associated with poorer walking speed (p = 0.014) and stride time (p = 0.011), female sex with shorter stride time (p = 0.000) and shorter double stance (p = 0.005). Length of full-time education was associated with faster walking speed (p = 0.012) and shorter stride time (p = 0.045), and a history of muscular-skeletal disease with slower walking speed (p = 0.01) and shorter stride length (p = 0.015). Interestingly, volume of white matter hyperintensities (WMH) on FLAIR MRI images did not contribute independently to any of the gait measures (p > 0.05). CONCLUSIONS: No strong relationship between gait and non-motor cognition was observed in a cognitively healthy, high functioning sample of elderly. Nevertheless, we found some relationships with spatial, but not temporal gait which warrant further investigation. WMH made no independent contributionto gait.

Original publication




Journal article


Gait Posture

Publication Date





240 - 245


Cognition, Gait, Healthy elderly, Older adults, Walking, Aged, Cognition, Cohort Studies, Female, Gait, Humans, Magnetic Resonance Imaging, Male, Middle Aged, Neuropsychological Tests, Prospective Studies, Walking, Walking Speed