Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2014 IEEE. Glioblastomas are one the most aggressive brain tumors. Their usual bad prognosis is due to the heterogeneity of their response to treatment and the lack of early and robust biomarkers to decide whether the tumor is responding to therapy. In this work, we propose the use of a semi-supervised methodology for source extraction to identify the sources representing tumor response to therapy, untreated/unresponsive tumor, and normal brain; and create nosological images of the response to therapy based on those sources. Fourteen mice were used to calculate the sources, and an independent test set of eight mice was used to further evaluate the proposed approach. The preliminary results obtained indicate that was possible to discriminate response and untreated/unresponsive areas of the tumor, and that the color-coded images allowed convenient tracking of response, especially throughout the course of therapy.

Original publication




Conference paper

Publication Date



93 - 98