Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: To evaluate the use of radiofrequency scattering of a parallel transmit coil to track diaphragm motion. METHODS: Measurements made during radiofrequency excitation on an 8-channel parallel transmit coil by the directional couplers of the radiofrequency safety monitor were combined and converted into diaphragm position. A 30-s subject-specific calibration with an MRI navigator was used to determine a diaphragm estimate from each directional-coupler measure. Seven healthy volunteers were scanned at 7 T, in which images of the diaphragm were continuously acquired and directional couplers were monitored during excitation radiofrequency pulses. The ability to detect coughing was evaluated in one subject. The method was implemented on the scanner and evaluated for diaphragm gating of a free-breathing cardiac cine. RESULTS: Six of the seven scans were successful. In these subjects, the root mean square difference between MRI and scattering estimation of the superior-inferior diaphragm position was 1.4 ± 0.5 mm. On the scanner, the position was calculated less than 2 ms after every radiofrequency pulse. A prospectively gated (echocardiogram and respiration) high-resolution free-breathing cine showed no respiratory artifact and sharp blood-myocardium definition. CONCLUSIONS: Transmit coil scattering is sensitive to diaphragm motion and provides rapid, quantitative, and accurate monitoring of respiration. Magn Reson Med 79:2164-2169, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Original publication

DOI

10.1002/mrm.26866

Type

Journal article

Journal

Magn Reson Med

Publication Date

04/2018

Volume

79

Pages

2164 - 2169

Keywords

RF scattering, free breathing, motion, navigator, parallel transmit, respiration, Algorithms, Artifacts, Calibration, Diaphragm, Electrocardiography, Healthy Volunteers, Heart, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Models, Statistical, Motion, Myocardium, Radio Waves, Respiration, Scattering, Radiation