Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2014 IEEE. In this paper, we perform the first comparison of a large variety of connectivity measures in detecting causal effects among observed interacting systems based on their statistical significance. Well-known measures estimating direction and strength interdependence between time series are compared: information theoretic measures, model- based multivariate measures in the frequency domain, and the time domain, and phase-based measures. At the same time the phase locking index is used to consider phase relationship between signals, where the phase locking value implies that the response is delayed with respect to drive at some frequency. The performance of measures is tested on simulated data from three systems: three coupled Hénon maps; a multivariate autoregressive (MVAR) model with and without EEG as an exogenous input; and simulated EEG. No measure was consistently superior. Measures that model the data as MVAR perform well when the data are drawn from that model. Frequency domain measures perform well when the data have a clearly defined band of interest. When neither of these is true, information theoretic measures perform well.

Original publication




Conference paper

Publication Date



719 - 723