Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Advancements in neuroimaging techniques have allowed for the investigation of the neural correlates of memory functions in the whole human brain. Thus, the involvement of various cortical regions, including the medial temporal lobe (MTL) and posterior parietal cortex (PPC), has been repeatedly reported in the human memory processes of encoding and retrieval. However, the functional roles of these sites could be more fully characterized utilizing nonhuman primate models, which afford the potential for well-controlled, finer-scale experimental procedures that are inapplicable to humans, including electrophysiology, histology, genetics, and lesion approaches. Yet, the presence and localization of the functional counterparts of these human memory-related sites in the macaque monkey MTL or PPC were previously unknown. Therefore, to bridge the inter-species gap, experiments were required in monkeys using functional magnetic resonance imaging (fMRI), the same methodology adopted in human studies. Here, we briefly review the history of experimentation on memory systems using a nonhuman primate model and our recent fMRI studies examining memory processing in monkeys performing recognition memory tasks. We will discuss the memory systems common to monkeys and humans and future directions of finer cell-level characterization of memory-related processes using electrophysiological recording and genetic manipulation approaches.

Original publication




Journal article


Behav Brain Res

Publication Date





53 - 61


Functional magnetic resonance imaging, Macaque monkey, Medial temporal lobe, Posterior parietal cortex, Recognition memory, Serial position effect, Animals, Brain, Brain Mapping, Electrophysiology, Genetic Techniques, Humans, Image Processing, Computer-Assisted, Memory, Nerve Net, Neural Pathways, Neuroimaging, Primates