Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In adults, patterns of neural activation associated with perhaps the most basic language skill--overt object naming--are extensively modulated by the psycholinguistic and visual complexity of the stimuli. Do children's brains react similarly when confronted with increasing processing demands, or they solve this problem in a different way? Here we scanned 37 children aged 7-13 and 19 young adults who performed a well-normed picture-naming task with 3 levels of difficulty. While neural organization for naming was largely similar in childhood and adulthood, adults had greater activation in all naming conditions over inferior temporal gyri and superior temporal gyri/supramarginal gyri. Manipulating naming complexity affected adults and children quite differently: neural activation, especially over the dorsolateral prefrontal cortex, showed complexity-dependent increases in adults, but complexity-dependent decreases in children. These represent fundamentally different responses to the linguistic and conceptual challenges of a simple naming task that makes no demands on literacy or metalinguistics. We discuss how these neural differences might result from different cognitive strategies used by adults and children during lexical retrieval/production as well as developmental changes in brain structure and functional connectivity.

Original publication

DOI

10.1093/cercor/bhu120

Type

Journal article

Journal

Cereb Cortex

Publication Date

10/2015

Volume

25

Pages

3261 - 3277

Keywords

development, fMRI, language production, task difficulty, word generation, Adolescent, Adult, Brain, Brain Mapping, Child, Female, Humans, Language, Magnetic Resonance Imaging, Male, Middle Aged, Pattern Recognition, Visual, Psychomotor Performance, Temporal Lobe, Young Adult