Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The ability to rapidly and accurately recognize visual stimuli represents a significant computational challenge. Yet, despite such complexity, the primate brain manages this task effortlessly. How it does so remains largely a mystery. The study of visual perception and object recognition was once limited to investigations of brain-damaged individuals or lesion experiments in animals. However, in the last 25years, new methodologies, such as functional neuroimaging and advances in electrophysiological approaches, have provided scientists with the opportunity to examine this problem from new perspectives. This review highlights how some of these recent technological advances have contributed to the study of visual processing and where we now stand with respect to our understanding of neural mechanisms underlying object recognition.

Original publication

DOI

10.1016/j.visres.2010.10.002

Type

Journal article

Journal

Vision Res

Publication Date

13/04/2011

Volume

51

Pages

782 - 799

Keywords

Animals, Form Perception, Humans, Learning, Neurons, Primates, Visual Cortex