Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Performance in a reaction time task can be strongly influenced by the physical properties of the stimuli used (e.g., position and intensity). The reduction in reaction time observed with higher-intensity visual stimuli has been suggested to arise from reduced processing time along the visual pathway. If this hypothesis is correct, activity should be registered in neurons sooner for higher-intensity stimuli. We evaluated this hypothesis by measuring the onset of neural activity in the intermediate layers of the superior colliculus while monkeys generated saccades to high or low-intensity visual stimuli. When stimulus intensity was high, the response onset latency was significantly reduced compared to low-intensity stimuli. As a result, the minimum time for visually triggered saccades was reduced, accounting for the shorter saccadic reaction times (SRTs) observed following high-intensity stimuli. Our results establish a link between changes in neural activity related to stimulus intensity and changes to SRTs, which supports the hypothesis that shorter SRTs with higher-intensity stimuli are due to reduced processing time.

Original publication




Journal article


Exp Brain Res

Publication Date





53 - 59


Animals, Macaca mulatta, Male, Motor Neurons, Neurons, Afferent, Photic Stimulation, Reaction Time, Saccades, Superior Colliculi