Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: We systematically reviewed existing critical care electroencephalography (EEG) educational programs for non-neurologists, with the primary goal of reporting the content covered, methods of instruction, overall duration, and participant experience. Our secondary goals were to assess the impact of EEG programs on participants' core knowledge, and the agreement between non-experts and experts for seizure identification. SOURCE: Major databases were searched from inception to 30 August 2020. Randomized controlled trials, cohort studies, and descriptive studies were all considered if they reported an EEG curriculum for non-neurologists in a critical care setting. Data were presented thematically for the qualitative primary outcome and a meta-analysis using a random effects model was performed for the quantitative secondary outcomes. PRINCIPAL FINDINGS: Twenty-nine studies were included after reviewing 7,486 citations. Twenty-two studies were single centre, 17 were from North America, and 16 were published after 2016. Most EEG studies were targeted to critical care nurses (17 studies), focused on processed forms of EEG with amplitude-integrated EEG being the most common (15 studies), and were shorter than one day in duration (24 studies). In pre-post studies, EEG programs significantly improved participants' knowledge of tested material (standardized mean change, 1.79; 95% confidence interval [CI], 0.86 to 2.73). Agreement for seizure identification between non-experts and experts was moderate (Cohen's kappa = 0.44; 95% CI, 0.27 to 0.60). CONCLUSIONS: It is feasible to teach basic EEG to participants in critical care settings from different clinical backgrounds, including physicians and nurses. Brief training programs can enable bedside providers to recognize high-yield abnormalities such as non-convulsive seizures.

Original publication

DOI

10.1007/s12630-021-01962-y

Type

Journal article

Journal

Can J Anaesth

Publication Date

11/03/2021

Keywords

brain injuries, critical care, electroencephalography, medical education, neurophysiology, seizures