Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2020 IEEE. Brain stimulation therapies have been established as effective treatments for Parkinson's disease, essential tremor, and epilepsy, as well as having high diagnostic and therapeutic potential in a wide range of neurological and psychiatric conditions. Novel interventions such as extended reality (XR), video games and exergames that can improve physiological and cognitive functioning are also emerging as targets for therapeutic and rehabilitative treatments. Previous studies have proposed specific applications involving non-invasive brain stimulation (NIBS) and virtual environments, but to date these have been uni-directional and restricted to specific applications or proprietary hardware. Here, we describe technology integration methods that enable invasive and non-invasive brain stimulation devices to interface with a cross-platform game engine and development platform for creating bi-directional brain-computer interfaces (BCI) and XR-based interventions. Furthermore, we present a highly-modifiable software framework and methods for integrating deep brain stimulation (DBS) in 2D, 3D, virtual and mixed reality applications, as well as extensible applications for BCI integration in wireless systems. The source code and integrated brain stimulation applications are available online at https: //github.com/oxfordbioelectronics/brain-stim-game.

Original publication

DOI

10.1109/SMC42975.2020.9282993

Type

Conference paper

Publication Date

11/10/2020

Volume

2020-October

Pages

3695 - 3701