Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2015 Chassang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The double-blind randomized controlled trial (DBRCT) is the gold standard of medical research. We show that DBRCTs fail to fully account for the efficacy of treatment if there are interactions between treatment and behavior, for example, if a treatment is more effective when patients change their exercise or diet. Since behavioral or placebo effects depend on patients' beliefs that they are receiving treatment, clinical trials with a single probability of treatment are poorly suited to estimate the additional treatment benefit that arises from such interactions. Here, we propose methods to identify interaction effects, and use those methods in a meta-analysis of data from blinded anti-depressant trials in which participant-level data was available. Out of six eligible studies, which included three for the selective serotonin re-uptake inhibitor paroxetine, and three for the tricyclic imipramine, three studies had a high (>65%) probability of treatment. We found strong evidence that treatment probability affected the behavior of trial participants, specifically the decision to drop out of a trial. In the case of paroxetine, but not imipramine, there was an interaction between treatment and behavioral changes that enhanced the effectiveness of the drug. These data show that standard blind trials can fail to account for the full value added when there are interactions between a treatment and behavior. We therefore suggest that a new trial design, two-bytwo blind trials, will better account for treatment efficacy when interaction effects may be important.

Original publication

DOI

10.1371/journal.pone.0127227

Type

Journal article

Journal

PLoS ONE

Publication Date

10/06/2015

Volume

10