Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

© 2020, Springer Nature Switzerland AG. The combination of datasets is vital for providing increased statistical power, and is especially important for neurological conditions where limited data is available. However, our ability to combine datasets is limited by the addition of variance caused by factors such as differences in acquisition protocol and hardware. We aim to create scanner-invariant features using an iterative training scheme based on domain adaptation techniques, whilst simultaneously completing the desired segmentation task. We demonstrate the technique using an encoder-decoder architecture similar to the U-Net but expect that the proposed training scheme would be applicable to any feedforward network and task. We show that the network can be used to harmonise two datasets and also show that the network is applicable in the common scenario of limited available training data, meaning that the network should be applicable for real-world segmentation problems.

Original publication

DOI

10.1007/978-3-030-52791-4_2

Type

Conference paper

Publication Date

01/01/2020

Volume

1248 CCIS

Pages

15 - 25