PURPOSE: To assess whether artifacts in multi-slice multi-echo spin echo neck imaging, thought to be caused by brief motion events such as swallowing, can be corrected by reacquiring corrupted central k-space data and estimating the remainder with parallel imaging. METHODS: A single phase-encode line (ky = 0, phase-encode direction anteroposterior) navigator echo was used to identify motion-corrupted data and guide the online reacquisition. If motion corruption was detected in the 7 central k-space lines, they were replaced with reacquired data. Subsequently, GRAPPA reconstruction was trained on the updated central portion of k-space and then used to estimate the remaining motion-corrupted k-space data from surrounding uncorrupted data. Similar compressed sensing-based approaches have been used previously to compensate for respiration in cardiac imaging. The g-factor noise amplification was calculated for the parallel imaging reconstruction of data acquired with a 10-channel neck coil. The method was assessed in scans with 9 volunteers and 12 patients. RESULTS: The g-factor analysis showed that GRAPPA reconstruction of 2 adjacent motion-corrupted lines causes high noise amplification; therefore, the number of 2-line estimations should be limited. In volunteer scans, median ghosting reduction of 24% was achieved with 2 adjacent motion-corrupted lines correction, and image quality was improved in 2 patient scans that had motion corruption close to the center of k-space. CONCLUSION: Motion-corrupted echo-trains can be identified with a navigator echo. Combined reacquisition and parallel imaging estimation reduced motion artifacts in multi-slice MESE when there were brief motion events, especially when motion corruption was close to the center of k-space.
Journal article
Magn Reson Med
06/2020
83
2026 - 2041
MR motion navigator, atherosclerotic plaque imaging, data estimation motion correction, navigator-based reacquisition, parallel imaging, vessel-wall imaging, Algorithms, Artifacts, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Motion, Reproducibility of Results