Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

Recent human and rodent brain imaging studies have shown that the shape of the brain can be changed by experience. These mesoscopic alterations in neuroanatomy are hypothesized to be driven by changes at the level of neuronal processes. To examine whether the shape of the brain changes rapidly, we used MRI to examine changes in the volume of the hippocampus across the 4-6 day estrous cycle in the female mouse. It is well known that changing steroid levels across the cycle influence dendritic spine maturation and alter synapse density in the hippocampus; our results show that the estrous cycle is associated with approximately 2-3% changes in hippocampal volume as seen by high-resolution ex-vivo MRI. Changes in hippocampal volume are, moreover, associated with a switch between hippocampal and striatal based navigation strategies in solving the dual choice T-maze in the same mice. A second experiment, using in-vivo MRI, suggests that these changes in hippocampal volume can occur over a 24 hour period. In summary, we show that the brain is highly plastic at a mesoscopic level of resolution detectable by MRI, that volumetric increases and decreases in hippocampal volume follow previously established patterns of changes in neuropil, and that these changes in volume predict changes in cognition.

Original publication

DOI

10.1016/j.neuroimage.2013.06.074

Type

Journal article

Journal

Neuroimage

Publication Date

12/2013

Volume

83

Pages

593 - 598

Keywords

Animals, Cognition, Estrous Cycle, Female, Hippocampus, Magnetic Resonance Imaging, Maze Learning, Mice, Mice, Inbred C57BL, Neuronal Plasticity, Time Factors