Search results
Found 8120 matches for
Imaging CNS modulation of pain in humans.
Pain is a highly complex and subjective experience that is not linearly related to the nociceptive input. What is clear from anecdotal reports over the centuries and more recently from animal and human experimentation is that nociceptive information processing and consequent pain perception is subject to significant pro- and anti-nociceptive modulations. These modulations can be initiated reflexively or by contextual manipulations of the pain experience including cognitive and emotional factors. This provides a necessary survival function since it allows the pain experience to be altered according to the situation rather than having pain always dominate. The so-called descending pain modulatory network involving predominantly medial and frontal cortical areas, in combination with specific subcortical and brain stem nuclei appears to be one key system for the endogenous modulation of pain. Furthermore, recent findings from functional and anatomical neuroimaging support the notion that an altered interaction of pro- and anti-nociceptive mechanisms may contribute to the development or maintenance of chronic pain states. Research on the involved circuitry and implemented mechanisms is a major focus of contemporary neuroscientific research in the field of pain and should provide new insights to prevent and treat chronic pain states.
Multiple somatotopic representations of heat and mechanical pain in the operculo-insular cortex: a high-resolution fMRI study.
Whereas studies of somatotopic representation of touch have been useful to distinguish multiple somatosensory areas within primary (SI) and secondary (SII) somatosensory cortex regions, no such analysis exists for the representation of pain across nociceptive modalities. Here we investigated somatotopy in the operculo-insular cortex with noxious heat and pinprick stimuli in 11 healthy subjects using high-resolution (2 × 2 × 4 mm) 3T functional magnetic resonance imaging (fMRI). Heat stimuli (delivered using a laser) and pinprick stimuli (delivered using a punctate probe) were directed to the dorsum of the right hand and foot in a balanced design. Locations of the peak fMRI responses were compared between stimulation sites (hand vs. foot) and modalities (heat vs. pinprick) within four bilateral regions of interest: anterior and posterior insula and frontal and parietal operculum. Importantly, all analyses were performed on individual, non-normalized fMRI images. For heat stimuli, we found hand-foot somatotopy in the contralateral anterior and posterior insula [hand, 9 ± 10 (SD) mm anterior to foot, P < 0.05] and in the contralateral parietal operculum (SII; hand, 7 ± 10 mm lateral to foot, P < 0.05). For pinprick stimuli, we also found somatotopy in the contralateral posterior insula (hand, 9 ± 10 mm anterior to foot, P < 0.05). Furthermore, the response to heat stimulation of the hand was 11 ± 12 mm anterior to the response to pinprick stimulation of the hand in the contralateral (left) anterior insula (P < 0.05). These results indicate the existence of multiple somatotopic representations for pain within the operculo-insular region in humans, possibly reflecting its importance as a sensory-integration site that directs emotional responses and behavior appropriately depending on the body site being injured.
Getting the pain you expect: mechanisms of placebo, nocebo and reappraisal effects in humans.
The perception of pain is subject to powerful influences. Understanding how these are mediated at a neuroanatomical and neurobiological level provides us with valuable information that has a direct impact on our ability to harness positive and minimize negative effects therapeutically, as well as optimize clinical trial designs when developing new analgesics. This is particularly relevant for placebo and nocebo effects. New research findings have directly contributed to an increased understanding of how placebo and nocebo effects are produced and what biological and psychological factors influence variances in the magnitude of the effect. The findings have relevance for chronic pain states and other disorders, where abnormal functioning of crucial brain regions might affect analgesic outcome even in the normal therapeutic setting.
How neuroimaging studies have challenged us to rethink: is chronic pain a disease?
UNLABELLED: In this review, we present data from functional, structural, and molecular imaging studies in patients and animals supporting the notion that it might be time to reconsider chronic pain as a disease. Across a range of chronic pain conditions, similar observations have been made regarding changes in structure and function within the brains of patients. We discuss these observations within the framework of the current definition of a disease. PERSPECTIVE: Neuroimaging studies have made a significant scientific impact in the study of pain. Knowledge of nociceptive processing in the noninjured and injured central nervous system has grown considerably over the past 2 decades. This review examines the information from these functional, structural, and molecular studies within the framework of a disease state.
Lateralisation of nociceptive processing in the human brain: a functional magnetic resonance imaging study.
Nociceptive processing within the human brain takes place within two distinct and parallel systems: the lateral and medial pain systems. Current knowledge indicates that the lateral system is involved in processing the sensory-discriminative aspects of pain, and that the medial system is involved in processing the affective-motivational aspects of pain. Hemispheric differences in brain activation (lateralisation) during nociceptive processing were studied to further clarify the division of function between the lateral and medial pain systems. Hemispheric lateralisation was studied by applying painful CO(2) laser stimuli of 3-s duration sequentially to the left and right medial lower calves of five normal right-handed human subjects. The resultant brain activity was measured using 3-T functional magnetic resonance imaging, by determining significant changes in blood oxygen level dependent (BOLD) signal and applying a general linear modelling approach. Volumes of interest were defined for the primary and secondary somatosensory cortices (SI and SII), the insular cortex, and the thalamus, on individual subjects' high-resolution structural scans. Hemispheric lateralisation was quantified by comparing the level of activation between brain hemispheres within each volume of interest. In SII, no significant hemispheric difference in activation was detected. In the insula, activation was significantly greater in the left hemisphere than the right. In both SI and the thalamus, activation in response to painful stimulation was significantly greater in the hemisphere contralateral to the stimulus, which is consistent with these areas being involved in processing the sensory-discriminative aspects of pain.
Adelta nociceptor response to laser stimuli: selective effect of stimulus duration on skin temperature, brain potentials and pain perception.
OBJECTIVE: To disclose a possible effect of duration of pulsed laser heat stimuli on Adelta nociceptor responses, skin temperature profiles, brain evoked potentials and pain perception. METHODS: We used a laser stimulator which works in the millisecond range and allows us to change the duration of the pulse while keeping the total energy of the stimulus constant. In 10 healthy volunteers, we measured the intensity of perceived pain with a 0-10 scale and the latency and amplitude of the early N1 and late N2 components of the scalp potentials evoked by laser pulses of equal energy and three different stimulus durations (2, 10, and 20 ms). Using a specifically developed pyrometer with a temporal resolution lower than 1 ms we also measured stimulus-induced changes of skin temperature. RESULTS: Stimulus duration significantly influenced temperature rise times, pain perception, and brain potentials. Shorter stimulus durations yielded steeper slopes in the skin temperature profiles and higher pain ratings, shortened the latency of the N1 and N2 components, and increased the amplitude of N1. CONCLUSIONS AND SIGNIFICANCE: The shorter stimulus duration shortens receptor activation times and yields a more synchronous afferent volley, thus providing a stronger spatial-temporal summation at central synapses that enhances intensity of first pain and brain potentials. This may prove useful in clinical applications.
Cerebellar responses during anticipation of noxious stimuli in subjects recovered from depression. Functional magnetic resonance imaging study.
BACKGROUND: Subjects recovered from depression have a substantial risk for recurrence of depression, suggesting persistent abnormalities in brain activity. AIMS: To test whether women recovered from depression show abnormal brain activity in functional magnetic resonance imaging (fMRI) during a conditioning paradigm with a noxious pain stimulus. METHOD: Ten unmedicated women who had recovered from major depression and eight healthy control women each received either noxious hot or non-noxious warm stimuli, the onset of which was signalled by a specific coloured light during 3-tesla echo planar imaging-based fMRI. RESULTS: Similar patterns of brain activation were found during painful stimulation for both patients and healthy controls. However, relative to healthy controls, subjects recovered from depression showed a reduced response in the cerebellum during anticipation of the noxious stimulus compared with anticipation of the non-noxious stimulus. CONCLUSIONS: Our data suggest that abnormal cerebellar function could be a marker of vulnerability to recurrent depression. This could provide a new target for therapeutic interventions.
A 31P-magnetic resonance spectroscopy and biochemical study of the mo(vbr) mouse: potential model for the mitochondrial encephalomyopathies.
31P-magnetic resonance spectroscopy (31P-MRS) provides new biochemical information on mitochondrial disorders affecting brain and muscle. To elucidate the mechanisms of mitochondrial abnormalities, however, animal models are needed. We assessed the mo(vbr) (mottled viable brindled) mouse for its value in studying (1) energetics of a mitochondrial disorder and (2) 31P-MRS changes associated with mitochondrial abnormalities in vivo. The maximal activity of succinate-cytochrome c reductase was significantly reduced in mo(vbr) muscle compared to controls, whereas cytochrome oxidase activity was only reduced in mo(vbr) brain. 31P-MRS of mo(vbr) brain showed an increased pH, but no changes in any metabolite ratios. The phosphocreatine (PCr) recovery rate after exercise was reduced in muscles from mo(vbr) mice, indicating impairment of oxidative metabolism. We conclude that mo(vbr) brain and muscle tissue have biochemical abnormalities consistent with mitochondrial impairment. The PCr recovery rate, measured by 31P-MRS, was sensitive to the muscle abnormality. This strain is best described as having chronic mitochondrial dysfunction.
A 31P-NMR study of muscle exercise metabolism in mdx mice: evidence for abnormal pH regulation.
We have studied exercise metabolism in vivo in the mdx mouse model of Duchenne muscular dystrophy with 31P-nuclear magnetic resonance spectroscopy. Intracellular pH, ratios of phosphocreatine (PCr) to ATP and PCr to inorganic phosphate (P(i)) expressed as PCr/ATP and PCr/(PCr+P(i)) as well as tension generated at the Achilles tendon were measured during sciatic nerve stimulation. Tension was similar between the mdx and control strain C57Bl/10ScSn at 10 Hz stimulation but slightly higher than the control at 100 Hz. The PCr/ATP and PCr/(PCr+P(i)) ratios were significantly reduced in mdx vs. control muscle during exercise. Although resting muscle pH in mdx mice is more alkaline than normal muscle, the pH of mdx muscle during exercise is reduced relative to controls, as is the rate of pH recovery. Total lactate is not elevated in the cells and so it is argued that there is a reduction in the capacity to export proton equivalents in muscles of mdx mice which could be caused by an elevation in intracellular sodium. This provides more evidence of impaired ionic regulation in dystrophic muscle and could be used as an index for the evaluation in vivo of therapeutic interventions such as myoblast transfer or gene replacement therapy.
Measurement of relative cerebral blood volume using BOLD contrast and mild hypoxic hypoxia.
Relative cerebral blood volume (CBV) was estimated using a mild hypoxic challenge in humans, combined with BOLD contrast gradient-echo imaging at 3 T. Subjects breathed 16% inspired oxygen, eliciting mild arterial desaturation. The fractional BOLD signal change induced by mild hypoxia is expected to be proportional to CBV under conditions in which there are negligible changes in cerebral perfusion. By comparing the regional BOLD signal changes arising with the transition between normoxia and mild hypoxia, we calculated CBV ratios of 1.5 ± 0.2 (mean ± S.D.) for cortical gray matter to white matter and 1.0 ± 0.3 for cortical gray matter to deep gray matter.
Sex hormones and pain: the evidence from functional imaging.
There is a substantial body of epidemiological and clinical evidence suggesting that the sex hormones, particularly estradiol and progesterone, play a role in pain. Behavioral studies have not been useful in understanding the relationship between sex hormones and pain perception, and certainly have not helped to elucidate the mechanisms by which such effects may be mediated. This review aims to address the additional insights functional imaging has given us into the role of sex hormones in pain. Functional imaging techniques and experimental designs are discussed before the literature investigating specific questions relating to hormones and pain is reviewed. Finally, we conclude by considering how results of studies imaging the influence of sex hormones in related areas such as emotion and cognition also may inform our understanding of this complex area.
Neuroimaging as a tool for pain diagnosis and analgesic development.
Neuroimaging makes it possible to study pain processing beyond the peripheral nervous system, at the supraspinal level, in a safe, noninvasive way, without interfering with neurophysiological processes. In recent years, studies using brain imaging methods have contributed to our understanding of the mechanisms responsible for the development and maintenance of chronic pain. Moreover, neuroimaging shows promising results for analgesic drug development and in characterizing different types of pain, bringing us closer to development of mechanism-based diagnoses and treatments for the chronic pain patient.
Pharmacological FMRI in the development of new analgesic compounds.
Chronic pain is a major problem for the individual and for society. Despite a range of drugs being available to treat chronic pain, only inadequate pain relief can be achieved for many patients. There is therefore a need for the development of new analgesic compounds. The assessment of pain depends to date entirely on the subjective report of the patient, in contrast to many other clinical conditions where biomarkers that help determine the severity and stage of the disease enable the physician to monitor the course of the disease and treatment effects longitudinally. In this article, we illustrate that magnetic resonance-based imaging techniques have the potential to provide sensitive and specific biomarkers of the pain experience, as well as clarifying disease mechanisms. Functional magnetic resonance imaging (FMRI) is particularly suited to investigating the effects of pharmacological agents on pain processing within the human central nervous system. Combination of FMRI and drug administration is termed pharmacological FMRI (phFMRI). In addition to outlining several methodological considerations that have to be taken into account when performing phFMRI, we discuss phFMRI studies that have already used this technique to study the effects of analgesic compounds. These studies provide promising data for the use of phFMRI as sensitive tool in assessing a potential drug effect. Such pharmacodynamic readouts obtained early in the process of drug development would not only save the pharmaceutical industry substantial amounts of money, but would also avoid the unnecessary exposure of patients to molecules with limited or no therapeutic value. We are therefore optimistic that phFMRI will be used as a tool with high sensitivity and specificity for evaluating analgesic agents in early drug development and clinical studies.
Imaging opioid analgesia in the human brain and its potential relevance for understanding opioid use in chronic pain.
Opioids play an important role for the management of acute pain and in palliative care. The role of long-term opioid therapy in chronic non-malignant pain remains unclear and is the focus of much clinical research. There are concerns regarding analgesic tolerance, paradoxical pain and issues with dependence that can occur with chronic opioid use in the susceptible patient. In this review, we discuss how far human neuroimaging research has come in providing a mechanistic understanding of pain relief provided by opioids, and suggest avenues for further studies that are relevant to the management of chronic pain with opioids. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'.
Pinprick-evoked brain potentials: a novel tool to assess central sensitization of nociceptive pathways in humans.
Although hyperalgesia to mechanical stimuli is a frequent sign in patients with inflammation or neuropathic pain, there is to date no objective electrophysiological measure for its evaluation in the clinical routine. Here we describe a technique for recording the electroencephalographic (EEG) responses elicited by mechanical stimulation with a flat-tip probe (diameter 0.25 mm, force 128 mN). Such probes activate Aδ nociceptors and are widely used to assess the presence of secondary hyperalgesia, a psychophysical correlate of sensitization in the nociceptive system. The corresponding pinprick-evoked potentials (PEPs) were recorded in 10 subjects during stimulation of the right and left hand dorsum before and after intradermal injection of capsaicin into the right hand and in 1 patient with a selective lesion of the right spinothalamic tract. PEPs in response to stimulation of normal skin were characterized by a vertex negative-positive (NP) complex, with N/P latencies and amplitudes of 111/245 ms and 3.5/11 μV, respectively. All subjects developed a robust capsaicin-induced increase in the pain elicited by pinprick stimulation of the secondary hyperalgesic area (+91.5%, P < 0.005). Such stimulation also resulted in a significant increase of the N-wave amplitude (+92.9%, P < 0.005), but not of the P wave (+6.6%, P = 0.61). In the patient, PEPs during stimulation of the hypoalgesic side were reduced. These results indicate that PEPs 1) reflect cortical activities triggered by somatosensory input transmitted in Aδ primary sensory afferents and spinothalamic projection neurons, 2) allow quantification of experimentally induced secondary mechanical hyperalgesia, and 3) have the potential to become a diagnostic tool to substantiate mechanical hyperalgesia in patients with presumed central sensitization.