Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We evaluated dynamic changes in water diffusion in the brain during the cardiac cycle by using cine diffusion MRI. On a 1.5-T MRI, ECG-triggered single-shot diffusion echo planar imaging was used with sensitivity encoding, halfscan, and rectangular field of view techniques for minimizing bulk motion effects such as brain pulsation, with a data-sampling window of 3 ms. The apparent diffusion coefficient (ADC) and fractional anisotropy (FA) in the white matter zone were determined in ten healthy volunteers and then compared with the intracranial volume change (ICVC) revealed by phase-contrast cine MRI during the cardiac cycle. In addition, a frequency analysis of these waveforms was performed. ADC and FA values changed significantly during the cardiac cycle, despite minimizing the effect of bulk motion, i.e., independent of bulk motion. The ADC was synchronized with the ICVC during the cardiac cycle. A significant positive correlation was noted among their amplitudes. Analysis of the dynamic change of water diffusion by use of cine diffusion MRI facilitates the assessment of intracranial conditions.

Original publication

DOI

10.1007/s12194-009-0056-3

Type

Journal article

Journal

Radiol Phys Technol

Publication Date

07/2009

Volume

2

Pages

133 - 137

Keywords

Adult, Anisotropy, Brain, Diffusion, Echo-Planar Imaging, Electrocardiography, Female, Fourier Analysis, Heart, Humans, Male, Middle Aged, Movement, Water, Young Adult