Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Humans and other animals make decisions in order to satisfy their goals. However, it remains unknown how neural circuits compute which of multiple possible goals should be pursued (e.g., when balancing hunger and thirst) and how to combine these signals with estimates of available reward alternatives. Here, humans undergoing fMRI accumulated two distinct assets over a sequence of trials. Financial outcomes depended on the minimum cumulate of either asset, creating a need to maintain "value equilibrium" by redressing any imbalance among the assets. Blood-oxygen-level-dependent (BOLD) signals in the rostral anterior cingulate cortex (rACC) tracked the level of imbalance among goals, whereas the ventromedial prefrontal cortex (vmPFC) signaled the level of redress incurred by a choice rather than the overall amount received. These results suggest that a network of medial frontal brain regions compute a value signal that maintains value equilibrium among internal goals.

Original publication

DOI

10.1016/j.neuron.2018.12.029

Type

Journal article

Journal

Neuron

Publication Date

06/03/2019

Volume

101

Pages

977 - 987.e3

Keywords

goal-directed decision-making, human fMRI, medial prefrontal cortex, value