Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Arterial spin labelling (ASL) MRI offers a non-invasive means to create blood-borne contrast in vivo for dynamic angiographic imaging. By spatial modulation of the ASL process it is possible to uniquely label individual arteries over a series of measurements, allowing each to be separately identified in the resulting angiographic images. This separation requires appropriate analysis for which a general Bayesian framework has previously been proposed. Here this framework is adapted for clinical dynamic angiographic imaging. This specifically addresses the issues of computational speed of the algorithm and the robustness required to deal with real patient data. An algorithm is proposed that can incorporate planning information about the arteries being imaged whilst adapting for subsequent patient movement. A fast maximum a posteriori solution is adopted and shown to be only marginally less accurate than Monte Carlo sampling under simulation. The final algorithm is demonstrated on in vivo data with analysis on a time scale of the order of 10min, from both a healthy control and a patient with a vertebro-basilar occlusion.

Original publication

DOI

10.1016/j.media.2011.12.004

Type

Journal article

Journal

Med Image Anal

Publication Date

05/2012

Volume

16

Pages

831 - 839

Keywords

Algorithms, Blood Flow Velocity, Cerebral Arteries, Cerebrovascular Circulation, Humans, Image Enhancement, Image Interpretation, Computer-Assisted, Magnetic Resonance Angiography, Reproducibility of Results, Sensitivity and Specificity, Spin Labels, Vertebrobasilar Insufficiency