Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Anterior cingulate cortex (ACC) is a nexus of information processing and regulation in the brain. Reflecting this central role, ACC is structurally and functionally heterogeneous, a fact long appreciated in studies of non-human primates. Human neuroimaging studies also recognize this functional heterogeneity, with meta-analyses and task-based studies demonstrating the existence of motor, cognitive and affective subdivisions. In contrast to task-based approaches, examinations of resting-state functional connectivity enable the characterization of task-independent patterns of correlated activity. In a novel approach to understanding ACC functional segregation, we systematically mapped ACC functional connectivity during rest. We examined patterns of functional connectivity for 16 seed ROIs systematically placed throughout caudal, rostral, and subgenual ACC in each hemisphere. First, our data support the commonly observed rostral/caudal distinction, but also suggest the existence of a dorsal/ventral functional distinction. For each of these distinctions, more fine-grained patterns of differentiation were observed than commonly appreciated in human imaging studies. Second, we demonstrate the presence of negatively predicted relationships between distinct ACC functional networks. In particular, we highlight negative relationships between rostral ACC-based affective networks (including the "default mode network") and dorsal-caudal ACC-based frontoparietal attention networks. Finally, interhemispheric activations were more strongly correlated between homologous regions than in non-homologous regions. We discuss the implications of our work for understanding ACC function and potential applications to clinical populations.

Original publication

DOI

10.1016/j.neuroimage.2007.05.019

Type

Journal article

Journal

Neuroimage

Publication Date

15/08/2007

Volume

37

Pages

579 - 588

Keywords

Adult, Brain Mapping, Female, Gyrus Cinguli, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Neural Pathways