Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

TDP-43 accumulates in nerve cells of nearly all cases of amyotrophic lateral sclerosis (ALS; the commonest form of motor neuron disease) and in the majority of Tau-negative frontotemporal lobar degeneration (FTLD). There is currently no biochemical test or marker of disease activity for ALS or FTLD, and the clinical diagnosis depends on the opinion of an experienced neurologist. TDP-43 has a key role in the pathogenesis of ALS/FTLD. Measuring TDP-43 in easily accessible biofluids, such as blood or cerebrospinal fluid, might reduce diagnostic delay and offer a readout for use in future drug trials. However, attempts at measuring disease-specific forms of TDP-43 in peripheral biofluids of ALS and FTLD patients have not yielded consistent results, and only some of the pathological biochemical features of TDP-43 found in human brain tissue have been detected in clinical biofluids to date. Reflecting on the molecular pathology of TDP-43, this review provides a critical overview on biofluid studies and future directions to develop a TDP-43-based clinical biomarker for ALS and FTLD.

Original publication

DOI

10.1007/s12035-018-0947-6

Type

Journal article

Journal

Mol Neurobiol

Publication Date

10/2018

Volume

55

Pages

7789 - 7801

Keywords

Amyotrophic lateral sclerosis, Biomarker, Cerebrospinal fluid, Frontotemporal dementia, TARDBP, TDP-43, Amyotrophic Lateral Sclerosis, Animals, Biomarkers, Brain, DNA-Binding Proteins, Frontotemporal Lobar Degeneration, Humans, Models, Biological