Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

One explanation for the weak relationship between neuropsychological deficits and conventional measures of disease burden in multiple sclerosis is that brain 'plasticity' allows adaptive reorganization of cognitive functions to limit impairment, despite injury. We have tested this hypothesis. Ten patients with multiple sclerosis and 11 healthy controls were studied using a functional MRI (fMRI) counting Stroop task. The two subject groups had comparable performances, but a predominantly left medial prefrontal region [Brodmann area (BA) 8/9/10] was more active during the task in patients than in controls (corrected P < 0.001), while a right frontal region (including BA 45 and the basal ganglia) was more active in controls than in patients (corrected P = 0.004). The magnitude of the differences correlated with the normalized brain parenchymal volume, a measure of disease burden (r = -0.72, P = 0.02). We then tested the effects of acute administration of rivastigmine, a central cholinesterase inhibitor, on patterns of brain activation. In five out of five multiple sclerosis patients there was a relative normalization of the abnormal Stroop-associated brain activation, although no change in the patterns of brain activation was found in any of four healthy controls given the drug and tested in the same way. We suggest that recruitment of medial prefrontal cortex is a form of adaptive brain plasticity that compensates, in part, for relative deficits in processing related to the reduced right prefrontal cortex activity with multiple sclerosis. This functional plasticity is modulated by cholinergic agonism and must arise from potentially highly dynamic mechanisms such as the 'unmasking' of latent pathways.

Original publication

DOI

10.1093/brain/awg284

Type

Journal article

Journal

Brain

Publication Date

12/2003

Volume

126

Pages

2750 - 2760

Keywords

Adult, Carbamates, Cholinesterase Inhibitors, Cognition, Double-Blind Method, Female, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Middle Aged, Multiple Sclerosis, Neuronal Plasticity, Neuropsychological Tests, Phenylcarbamates, Prefrontal Cortex, Rivastigmine