Volatility-driven learning in human infants.
Poli F., Ghilardi T., Bersee JHM., Mars RB., Hunnius S.
Adapting to change is a fundamental feature of human learning, yet its developmental origins remain elusive. We developed an experimental and computational approach to track infants' adaptive learning processes via pupil size, an indicator of tonic and phasic noradrenergic activity. We found that 8-month-old infants' tonic pupil size mirrored trial-by-trial fluctuations in environmental volatility, while phasic pupil responses revealed that infants used this information to dynamically optimize their learning. This adaptive strategy resulted in successful task performance, as evidenced by anticipatory looking toward correct target locations. The ability to estimate volatility varied significantly across infants, and these individual differences were related to infant temperament, indicating early links between cognitive adaptation and emotional responsivity. These findings demonstrate that infants actively adapt to environmental change, and that early differences in this capacity may have profound implications for long-term cognitive and psychosocial development.